
Watson Explorer Engine Connector SDK
v1.0.0

IBM

ii Watson Explorer Engine Connector SDK v1.0.0

Contents

Chapter 1. Watson Explorer Engine
Connector SDK Overview 1
Contents 1
Additional Sources 2
Connector Development Workflow 3

Connector SDK Framework 3
Basic Connector Terminology 3
Common Connector Architecture 5
Planning Overview 6
Writing Overview 7
Creating The Seed 9
Implementation 11
Converters. 13

Chapter 2. Getting Started 15
The Connector SDK Package 15

Connector SDK Package Overview 15
Compiling the Connector Examples With Gradle 15

Using The Example Connectors. 16
Using the Standard Connector Installation
Procedure 16
Manually Installing The Connector 17

Chapter 3. HelloWorld Connector . . . 19
HelloWorld Project Overview 19
HelloWorld Project Components 19

Hello World - Extended 20
Exercise 1: Adding A URL 20
Exercise 2: Changing The Document Title . . . 21
Exercise 3: Creating A New Document 21
Exercise 4: Adding New Content 22
Exercise 5: Create A Virtual Document 22
Exercise 6: Add A PDF File In A New Document 23

Chapter 4. Filesystem Connector . . . 25
Filesystem Project Overview 25
Filesystem Connector with Continuous Update . . 26

Filesystem with Continuous Update Project
Overview 27
Preparing The Filesystem Connector Crawl Seed
For Continuous Update 27
Adding Continuous Update Code To The
Filesystem Connector 28

Chapter 5. LDAP Connector. 29
LDAP Project Overview 29
LDAP Project Components 30

Chapter 6. Troubleshooting 33
Common Pitfalls. 33
Debugging 35
Remote Debugging with Eclipse 38

iii

iv Watson Explorer Engine Connector SDK v1.0.0

Chapter 1. Watson Explorer Engine Connector SDK Overview

The Watson™ Explorer Engine Connector SDK Documentation describes how to
build a custom connector that can enable you to crawl, retrieve, and index data
from a data repository and make that data searchable with Watson Explorer Engine
or Watson Explorer Application Builder.

The document will guide you through the connector development process with
procedures, exercises, and sample code, that will enable you to develop a fully
functional connector from start to finish.

Contents
The Connector SDK includes the scripts, code examples, exercises, procedures, and
connector requirements to build a Watson Explorer connector in Java or Scala.

The Connector SDK documentation is structured as follows:

Connector Development Workflow
Outlines the planning that is required for developing a connector from
start to finish using the Connector SDK.

Getting Started
Provides an overview of the Connector SDK package and includes
procedures on compiling and building the example connectors.

Connector Examples
Delivers three complete examples of connectors, with increasing levels of
complexity. The example connectors include the following (starting with
the least complex):

Hello World Connector
The Hello World connector provides an example of a
proof-of-concept basic connector. An enhanced version of the Hello
World connector is the The Hello World Extended connector. The
Hello World Extended connector builds upon the Hello World
Connector with a series of exercises to enhance the Hello World
proof-of-concept connector.

Note: The Connector SDK provides a Hello World connector
example in both Java and Scala. The solution for either is the same.
Therefore, only the Java version is described in the documentation.

Filesystem Connector
The Filesystem connector provides an example of a connector that
can crawl a typical filesystem and use authentication. Additionally,
the Filesystem with Continuous Update connector provides a
similar example of the previous filesystem connector that is further
enhanced to use some features of Watson Explorer Continuous
Update mode.

Note: Because Filesystem does not provide information about
deleted files, the Filesystem with Continuous Update connector
provides only some aspects of integrating Continuous Update
mode. It is intended to serve as a starting point for further

1

development and as an introduction to the complexity of adding
the Continuous Update feature into connector code.

LDAP Connector
The LDAP connector provides an example of a protocol
based-connector that can crawl repositories that are accessible by
using the Lightweight Directory Access Protocol (LDAP).

Note: This connector is the most complex connector provided and
serves as a model for other protocol based connectors.

Troubleshooting
Provides tips for troubleshooting common connector pitfalls and includes
connector debugging techniques.

Additional Sources
Using the Connector SDK requires technical knowledge in several areas.

Authentication and Security
The Connector SDK assumes you are familiar with basic authentication
mechanisms and securing web applications. The Connector SDK does not
go into detail behind any one particular security protocol or method to
invoke security. Beyond typical ACLs, many systems have custom security
binding protocols and to describe a particular one here would be to
provide a solution to that one alone. Custom security implementations
require deep knowledge of the source data repository and it's composition.

For a primer on basic Watson Explorer Engine authentication see the
authentication tutorial on IBM Knowledge Center at Tutorial: Applying
Access Controls to Search Results.

AXL The Connector SDK does not provide a full function reference for AXL, an
XML-based domain specific language that is used in the Watson Explorer
Engine connector framework.

For more information on AXL functions, see the Watson Explorer Engine
documentation on IBM Knowledge Center at http://www.ibm.com/
support/knowledgecenter/SS8NLW_11.0.0/watsonexplorer_11.0.0.html.

Tip: You can search for AXL references in the IBM Knowledge Center by
entering viv:function-name in the search box, where function-name is the
actual name of the AXL reference. For example: Searching for
viv:crawl-enqueue-url will take you to a search results page that provides
a link to that AXL reference.

Converter Development
The Connector SDK does not describe how to develop the converters that
may be needed to crawl a custom repository. However, Watson Explorer
comes with predefined converters that can be used out of the box.
Additionally, the Connector SDK describes the role of a converter within
the context of a connector and provides a converter XML code sample as
guidance.

For more information on Watson Explorer converters, see the converters
documentation on IBM Knowledge Center at Converting

Java / Scala
The Connector SDK assumes proficiency at Java or Scala programming.

2 Watson Explorer Engine Connector SDK v1.0.0

http://www.ibm.com/support/knowledgecenter/SS8NLW_11.0.0/watsonexplorer_11.0.0.html
http://www.ibm.com/support/knowledgecenter/SS8NLW_11.0.0/watsonexplorer_11.0.0.html

Although you do not need to know Scala, you will need to understand
Java to follow along and build the connector examples.

Watson Explorer Administration
The Connector SDK assumes a familiarity with Watson Explorer Engine
administration, system requirements, typical deployment scenarios and
therefore does not explain the administrative tasks as part of the connector
development procedures.

For more information on Watson Explorer Engine administration, see the
Watson Explorer Foundational Components documentation on IBM
Knowledge Center at IBM Watson Explorer.

Connector Development Workflow
Planning the development of a connector begins with a conceptual overview of the
primary components of a connector and an understanding of the roles that they
play in the architecture of a connector.

Connector SDK Framework
The framework of the SDK enables the crawler and connector to work recursively
to retrieve, crawl, index and deliver data according to the node structure of a
particular data repository. The example connectors provided in this Connector SDK
are all built upon this conceptual framework. This framework can be described in
terms of the following functional areas:

Connecting and communicating
Connecting and communication require the following connector
capabilities:
v Connecting - Describes the process of making a connection between the

connector and your data repository.
v Authentication - Describes the process of establishing that the user who

is initiating the connection via a URL has the right privileges required
by the remote data repository to access the repository.

v Running - Describes the process of a crawler actively indexing
information in a remote repository.

v Stopping - Describes the process of stopping the crawler from indexing
information.

v Disconnecting - Describes the process of disconnecting a connector from
the remote data repository.

Crawling
Describes the crawler mechanism of actively identifying and retrieving
data in the remote repository and passing that data along to be indexed.

Basic Connector Terminology
This section provides a description of basic connector terminology.

Connector Framework
The connector framework enables the crawler and connector to work
recursively to retrieve, crawl, index and deliver data and have the same
information.

ConnectorNode
The Java object-representation of a crawl-url XML element.

Chapter 1. Watson Explorer Engine Connector SDK Overview 3

ConnectorWorker
Is a class that is called when an action is requested by the connector.

Continuous Update
The mechanism that enables new, updated, or deleted repository data to be
continuously indexed. As a result, repository updates such as document
modifications, and other changes, can be searched as quickly as possible.
Using a connector in Continuous Update mode typically means the crawler
should never need to be manually stopped and restarted, unless you are
performing maintenance on your data repository.

Crawl-URL
The URL that the crawler uses as a starting point to access data in a
remote data repository.

Important: This is not an actual URL but is an identifier for the location of
data source repository.

Crawler
The Watson Explorer Engine mechanism to retrieve information in a data
repository and pass it along into a conversion chain that normalizes the
data into an indexable format.

Crawling Seed
The root URL to access resources such as fileshares, SMB shares, databases,
email archives, and other data repositories that are accessible by various
web protocols. Different seed URLs have different capabilities. Seeds can
be repository-specific to enable connectors to crawl specific third-party
applications such as Salesforce, SharePoint, IBM Domino, and other client
relationship management (CRM) systems, product life cycle (PLC) systems,
content management systems (CMS), cloud-based applications, and other
web database applications. Each of the connector examples provided in
this SDK provide a seed to crawl that particular resource.

Fetcher
Is a class that is responsible for communicating with a data repository.

Gradle
A freely available build automation tool. Gradle is used to build the
connectors in the Connector SDK.

GuiceConnectorWorker
The GuiceConnectorWorker creates all of the appropriate bindings from the
node for its CrawlOptions, ConnectorOptions, and XML attributes. It passes
the modified ConnectorNode into a HandlerChainNodeProcessor.

Handler
Is a class that uses properties from the specialized node to perform some
functions.

InputWorker
The InputWorker continually reads single nodes from the connection,
identifying a node as either a crawl-url element or pipeline-size-reply
element.

Scala Unlike Java, Scala has many features of functional programming languages
like Scheme, Standard ML and Haskell, including currying, type inference,
immutability, lazy evaluation, and pattern matching.

Specialized Node
Is a node that provides a specific instruction to a Handler. The specialized

4 Watson Explorer Engine Connector SDK v1.0.0

node informs a Handler if it should be activated and, if appropriate, use
properties from the specialized node, to perform a specific function.

Common Connector Architecture
The crawler and the connector interact through a sequence of processes that
involve various connector mechanisms each with a specific task. The mechanisms
and the sequence through which they interact comprise a common connector
architecture as displayed Figure 1.

The Connector Framework passes a ConnectorNode into a Node Converter. The
converter will use GuiceConnectorWorker to create all of the appropriate node
bindings for its CrawlOptions, ConnectorOptions, and XML attributes. Next, it
passes the modified ConnectorNode into a HandlerChainNodeProcessor. The
HandlerChainNodeProcessor converts the ConnectorNode into a specialized node
which is then passed into a chain of one or more Handlers.

A handler uses properties from the specialized node to perform some function.
These function might include: querying a repository for document IDs, fetching
data from a repository, and sending new ConnectorNodes (or crawl-urls) to the
Crawler.

Figure 1. Common Connector Architecture

Chapter 1. Watson Explorer Engine Connector SDK Overview 5

After processing the node, a handler has the option of passing the node to the next
handler in the chain, or stopping further processing if there is not another handler
in the chain. If a (child) ConnectorNode created at this stage contains all of the data
it needs then the crawler does not need to send it back to the connector for more
processing in which case the handler can mark the ConnectorNode as complete
before sending it to the crawler.

When retrieving data from a repository, Handlers may employ one or more
Fetchers. These Fetchers are responsible for communicating with the data
repository, directly or potentially through an adapted API. Fetchers will create a
Model Object by translating the repository data into a format expected by the
handler using them.

Planning Overview
The development workflow that you can use to plan your connector starts with
basics such as obtaining a development repository and getting sample data from
that development repository.

At the planning stage, your goal is to identify the structure of the data contained
in the external system that you are trying to crawl. The structure of that data
might be comprised of systems that have users, communities, or documents.
Moreover, the data may be nested, such as is typically the case with filesystem or
email data. Next, you will consider if you have the right access to the data that
you want to crawl. Other considerations include API usage limitations. You should
be capable of performing a basic API call to your repository to determine the type
of data you will get back. Does that data meet your needs?

Once you are able to retrieve data, you will want to consider the storage
requirements for that data. Moreover, what will that data need to look like to be
useful? Will that information need converted into other data types or is the data
returned from an API call suitable enough in its native format to pass along with
no additional conversion? At the conceptual level of planning a connector, you will
want to have a notion of the connector features that you may want to include in
the connector. For example, will your connector need to support a security model
and if so, are you sufficiently knowledgeable about how that security model
works?

Other features to consider may be server load considerations. Once you start
crawling a resource, is that resource sufficiently provisioned to handle a crawl?
What about detecting changes to your index? Will your connector require the
ability to detect changes to the index continuously without restarting the crawler?
This entails adding Continuous Update mode to your connector which increases
the complexity of connector development. Understanding the structure of your
data is a key starting point for connector planning and developing an initial
connector workflow. Once you understand your data, and have thought about the
above considerations, you can configure a crawler seed with the requirements that
you need to connect to your data repository.

Identifying Connector Requirements
Identifying connector requirements entails reviewing your connector resources,
performance needs, risk factors, and understanding the data you wish to crawl
with your connector.

What follows are recommendations to consider when identifying your connector
requirements:

6 Watson Explorer Engine Connector SDK v1.0.0

v Identify the data size, number of documents, and the hardware and software
components of the type of repository that you will crawl. If you are going to
connect to a data repository, you should have a good idea of what that data
repository contains. For example, does it contain millions of documents? Is the
data structured or unstructured? How much storage does your repository use? Is
your data distributed across many systems? If you are tasked with building a
connector for a repository, then be sure to understand the data that you will be
dealing with by consulting with the data repository administrator, if that person
is not you.

v Determine your connector performance requirements. Do you have measurable
performance metrics that your connector must satisfy? Again, if that person is
not you, consult with the data repository administrator for the repository you
want to crawl and learn what performance metrics your connector must satisfy
for your environment.

v Asses development and test environment availability and comparability to a
production environment You want a test environment that is as similar as
possible to your production environment.

Important: Be cautious not to execute any API calls that modify the data on
your source system. Additionally, if you have a development system, be mindful
that you do not use the connector to modify the source system unintentionally.

v Develop a robust set of test cases that will validate your connector development.
If you have QA resources, consult them in outlining possible testing
requirements that may have been overlooked.

By identifying connector requirements, you will have a better understanding of
your data, what resources you have available to develop the connector, and will
have a clear understanding of the risks associated with crawling your data
repository.

Writing Overview
The connector writing process requires a conceptual understanding in several key
areas to ensure that when you develop a connector you are prepared to do so.
Generally, these key areas are followed sequentially. They include the following:
1. Understanding the data repository - First, you need to figure out the

structure of the data contained in the external system. Is it a flat set of types,
like Sharepoint (webs, lists, list items)? Is it a nested structure, like a
filesystem or email? Understanding the structure of your data repository is
critical to knowing how to develop a connector that will retrieve data from
that repository. Therefore, if you are not familiar with the model of the
repository that you are trying to access, then you will need to consult with
someone knowledgeable about the repository data model.

2. Defining the Seed - The seed enables the connector to access information that
will be necessary to connect to the data repository (for example: username,
password, filters, port numbers, and more). The seed is defined using a VXML
structure.

3. Creating a URL structure - You need to architect a URL scheme that uniquely
represents each piece of data extracted from the repository. Each URL will
have the following structure:
a. Protocol - Each URL starts with a protocol. This should be brief, but

descriptive. Examples include: imap, exchange, sharepoint, smb and others.
Do not use an already existing protocol like http since the behavior might
be unexpected.

Chapter 1. Watson Explorer Engine Connector SDK Overview 7

Note: Remember that a crawl-URL is an identifier for the data and not an
actual URL that can be accessed.

b. Host - We require that external systems run on an IP addressable machine,
even if it is a single global host (such as Salesforce). The host is used by
the crawler to control/balance the load. If you are accessing the local
machine you can use *localhost* as your host.

c. Path and CGI parameters - The combination of the two should uniquely
name any object/item in the system. However, be careful of "namespace"
ambiguity. For example: in IMAP, there needs to be a way to distinguish
between folders and messages. Thus imap://host/folder/to/message/
the_message would be bad, as folders could have the same "name" as
messages. While, imap://host/folder/to/message?message=the_message
would be good. In general, the best practice recommendation for naming is
to use the URL path for "types". Thus folders for file systems, tables for
databases, object types for sharepoint, and others. Then, given a specific
"type", a CGI parameter can be used to give the final name or identifier for
an item.

Note: Options (name/value pairs) to be attached to URLs are supported.
This enables authentication tokens and connection options that enable the
crawler to process URLs in an highly parallel and efficient manner.

4. Building the Core Connector Class - You will need to create a class that will
be the main entry point into the project. Usually we name this class as
<Repository>Connector.java, where <Repository> is the name of the
repository you are trying to access (for example: FilesystemConnector.java,
SalesForceConnector.java). This class is responsible for the interaction
between the crawler and the connector and it uses the plugin.xml file to let
the crawler know where it can be found. Example of entry in the plugin.xml
file:
<parameter id="class"
.helloworld.examples.HelloWorldConnector" />

This entry in the HelloWorld plugin.xml file lets the crawler know that
HelloWorldConnector.java is the main class for the Hello World Connector.

5. Injecting the seed values - There are generally two approaches to pass the
values from the crawler to the connector:
v Guice - This is the preferred method to create injection. The Filesystem and

LDAP connector provide examples of this method.
v Manual - This is the older method to create injection. The HelloWorld

connector provides an example of this method. Although this is the older
version, this solution is still important because it eliminates a lot of the
complexity that Guice introduces, complexity that might not be necessary,
especially with small connectors.

6. Creating Specialized Nodes - The specialized nodes define the entities. It
describes what data can come from the repository. For example, the
specialized node determines if data is a file or a document. These nodes
describe the different forms the connector node can take. It can tell you if
your data is a one type of entity or another.

7. Defining the HandlerChainModule - This class will create all the converter
and handler bindings. The purpose of this class is to explain what
handler/converter should be called when a particular node is provided and in
which order the handlers/converters should be accessed.

8. Adding the Handler node - After processing the node, a handler has the
option of passing the node to the next handler in the chain, or stopping

8 Watson Explorer Engine Connector SDK v1.0.0

further processing if there is not another handler in the chain. When it needs
more data from a repository, Handlers may employ one or more Fetchers.

9. Adding Fetchers - Fetchers are responsible for communicating with the data
repository, directly or potentially through an adapted API. Fetchers will create
a Model Object by translating the repository data into a format expected by
the handler using them.

10. Enhancing - Hardening the connector is the process of adding connector
features to your connector to support additional connector functionality. For
example, adding Continuous Update mode to your connector enables the
connector to detect changes in your index without having to restart the
crawler.

Creating The Seed
This section provides an overview of the XML seed structure of a connector and
describes the elements that comprise the seed. The connector seed is defined as an
XML function with one or more children.

The first element if the function element defined using at least four attributes
1. name: the name of the function; the value is the name of the seed

configuration file
2. type: type of the function used for display purpose in the admin interface; the

value is <crawl-seed>
3. products: defined only for the internal use and its value should always be

<all>

4. internal: a free text variable used to track the seed version for debug log
purpose.

Note: More information can be found at:https://www.ibm.com/support/
knowledgecenter/SS8NLW_11.0.1/
com.ibm.swg.im.infosphere.dataexpl.engine.schema.doc/r_schema-ref-element-
function.html

When the main function element is defined, with all its attributes, you need to
start creating the function's children. There are at least two types of xml elements
that can make the list of a function's children.

(1) prototype: defines a list of variable declarations which will be passed when
calling the function The following example for the HelloWorld connector show
how you can define a username and password variable in the Seed VXML file.
prototype>

<declare required="required" name="username" type="string">
<label name="label">Username</label>
<description name="description"> A sample username. This will be used to greet you.</description>

</declare>
<declare required="required" name="password" type="password">

<label name="label">Password></label>
<description name="description> This is not be used for anything.</description>

</declare>
</prototype>

Each <declare> element will declare a new variable that can be passed into the
connector framework and is defined using three attributes (name, required, and
type) and two children (description and label). The required attribute specifies if
the value for this variable should be provided when a new seed is created. The
name attribute is used to identify the variable in the connector framework and the

Chapter 1. Watson Explorer Engine Connector SDK Overview 9

https://www.ibm.com/support/knowledgecenter/SS8NLW_11.0.1/com.ibm.swg.im.infosphere.dataexpl.engine.schema.doc/r_schema-ref-element-function.html
https://www.ibm.com/support/knowledgecenter/SS8NLW_11.0.1/com.ibm.swg.im.infosphere.dataexpl.engine.schema.doc/r_schema-ref-element-function.html
https://www.ibm.com/support/knowledgecenter/SS8NLW_11.0.1/com.ibm.swg.im.infosphere.dataexpl.engine.schema.doc/r_schema-ref-element-function.html
https://www.ibm.com/support/knowledgecenter/SS8NLW_11.0.1/com.ibm.swg.im.infosphere.dataexpl.engine.schema.doc/r_schema-ref-element-function.html

type attribute specifies how is the value of the variable stored. In the username case
is just a simple string whereas in the password case is an encrypted value.
Moreover, the <label> element is used to display a name next to the text field
associated with the variable and <description> element will show up as a question
mark next to the variable with the information provided in this element.

(2) process-xsl: holds any XSL code that need to be processed. Use <xml-to-text>
element inside a process-xsl node so that the body of the section is nicely
displayed by editors. This section declares all the configuration fields defined in
the previous XML node, otherwise they will not be made available.

The section below is an example of such seed element, extracted from the
HelloWorld connector.
<process-xsl>

<xml-to-text xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:param name="username"/>
<xsl:param name="password"/>
<xsl:template match="/">

<xsl: variable name="extra-options">
<options>

Note: Repository type is not required to be defined, but is nice to have it.
<crawl-extender-option name="repositorytype">HelloWorld</crawl-extender-option>

Note: Reads the value provided for the username variable .
<crawl-extender-option name="username" value="{$username}</crawl-extender-option>

Note: Reads the value provided for the username variable.
<crawl-extender-option name="username" value="{$username}</crawl-extender-option>

Note: Reads the value provided for the password variable
<crawl-extender-option name="password" value="{$password}</crawl-extender-option> </options> </xsl:variable>

Note: The <next> element creates the seed URL using viv:url-build function.

Note: More information about this function can be found here:
https://www.ibm.com/support/knowledgecenter/SS8NLW_11.0.1/
com.ibm.swg.im.infosphere.dataexpl.engine.man.doc/r_viv_url-build.html

<xsl:variable name="root-url">
<xsl: value-of select="viv:url-build(’hello-java’,
’’, ’’, ’localhost’, ’-1’, ’’, ’’)"/>
</xsl:variable>
<call-function name="vse-crawler-seed-url-common">

<with name="urls" value="{$root-url}" />
<with name="extra-curl-options"
value="{viv:node-to-str($extra-options)}"/>

</call-function>
<crawl-extender>

<call-function name="vse-crawler-seed-extender-java-common"
no-view-resolved="no-view-resolved">
<with name="protocol">hello-java</with>

Note: The class name matches the information provided in the plugin.xml file.
<with name="classname">plugin:hellojava.plugin@hello-java</with>
<with name="dns">dns</with> </call-function>

</crawl-extender>
</xml:template>

10 Watson Explorer Engine Connector SDK v1.0.0

https://www.ibm.com/support/knowledgecenter/SS8NLW_11.0.1/com.ibm.swg.im.infosphere.dataexpl.engine.man.doc/r_viv_url-build.html
https://www.ibm.com/support/knowledgecenter/SS8NLW_11.0.1/com.ibm.swg.im.infosphere.dataexpl.engine.man.doc/r_viv_url-build.html

Implementation
Several Classes are required to produce a functional connector. When you build a
connector, the ConnectorNode is the object that is exchanged between the crawler
and the connector. Although not required, each connector will typically include a
number of Handlers and Fetchers.

Most of the connector projects can be defined given the following directory tree
structure:
v NEW_CONNECTOR_PROJECT

– GRADLE
– build.gradle

– settings.gradle

– SRC
- PLUGIN
- MAIN
v NODES
v RESOURCES
v JAVA/SCALA CLASSES

– NODES
– MODULES
– FETCHER
– HANDLER
– extra Java and Scala classes

– TEST
- RESOURCES
- JAVA/SCALA CLASSES
v NODES
v MODULES
v FETCHER
v HANDLER
v Extra Java and Scala classes

At the first level in the connector project tree there are two files used to define the
project as a gradle build. First we have build.gradle file that is used to define all
the dependencies and some basic properties of the project:
v project name
v project version
v project artifact ID

The second file, settings.gradle, is another mandatory file for a gradle build, and
is used to define the name of the root project.

SRC This folder contains all the source code for the connector project.

PLUGIN
The most important file contained in this folder is plugin.xml. This file is
used to define which class is the main class of the connector and which
class is used to define the Guice injections.

MAIN Contains all the JAVA and SCALA classes.

Chapter 1. Watson Explorer Engine Connector SDK Overview 11

Note: No matter if you are writing a Java connector or a Scala connector,
the structure of the project will be the same. Therefore we use the notation
JAVA or SCALA to represent one of the two implementations.

The main source code of the project can be divided into the following categories.

NODES
This folder contains the code that defines the main objects or tokens that
are exchanged between connector and crawler. Depending on the connector
you build, you might have one or multiple connector nodes.

MODULES
Used to cluster all classes that are used to define the connector modules.

For example, some of the most relevant modules that might be created are
the following:

ConnectionModule.java Class
Contains all the necessary code to make a connection to the data source.

ChainModule.java Class
Used to bind the interfaces to their implementation. This class should
extend the HandlerChainModule class and should overwrite the
configureHandlerChain() method.

DefaultOptionModule.java Class
Used to define the binding between the connector seed options and the
connector code HandlerModule.java

FETCHER
Not all connectors will have fetchers. If you want to allow your connector
to interact with the data source in multiple stages, to collect more data
when the connector node does not contain enough information, then you
will define that behavior in one or more fetchers that will be stored in this
folder.

HANDLER
Handlers are used to define what should the connector do when a
particular data is retrieved from the data source. For example, in the File
System Connector, there is a FolderHandler.java and a FileHandler.java file.
Each file is used to describe what the connector should do when it reads a
Folder and, respectively, a File from the datasource. This class should
overwrite the canProcess() and process() methods.

OTHER JAVA/SCALA CLASSES
In addition to all the clusters defined above, we also need to create at least
two other standard classes. First, we have the
ConnectorNameConnector.java Class which is the entry point in any
connector. And second, the ConnectorNameLifeCycleListener.java Class.
This will create a new Life Cycle Listener with a group of pre-defined
things that must be configured before the connector can start. This includes
logging, DefaultOptionModule and enabling Continuous Update mode.

RESOURCES
This section of the project is used to hold the build.properties file used
for the gradle build. This file usually has the same form and it contains the
following information:
v artifactId=@project.artifactId@

v groupId=@project.group@

v version=@project.version@

12 Watson Explorer Engine Connector SDK v1.0.0

v tag=@GIT_BUILD_TAG@

build.properties is a generic file used by the Gradle in conjunction to Jenkins
build tool to configure the build environment variables. If you do not create a
Jenkins job, you will not need this file. This file defines values for four variables:
artifactId, groupId, version and tag. These values are given as parameters for the
script and they are replaced with an actual value by the Jenkins job.
v groupId will identify your project uniquely across all projects
v artifactId is the name of the Jar without version
v version if you distribute it then you can choose any typical version with

numbers and dots (1.0, 1.1, 1.0.1, ...). Don't use dates as they are usually
associated with SNAPSHOT (nightly) builds.

v * tag is the tag used by the Jenkins job.

NODES
This folder contains the XML function files necessary to define a crawl
seed and the authentication mechanism. The first one is usually defined in
a function called: function.vse-crawler-seed-connector_name.xml.

TEST Usually, the TEST folder mimics the same structure as the MAIN folder,
therefore there will be a test class for each class defined in the main folder.

Converters
This section describes how converters generally fit into the connector development
framework, but does not provide guidance on developing custom converters that
may be required to crawl a specific repository.

Converters produce content types specific to the connector. In the following
example, the converter type-in attribute of the function element specifies the
content type of the document.
<function name="vse-converter-ldap-to-xml" type="converter"

type-in="application/ldap" products="all" internal="${project.version}"
type-out="application/vxml-unnormalized" >
<prototype>

<label>Ldap Converter</label>
<description>

Basic converter for the Ldap connector.
</description>

</prototype>
</function>

If you are developing a connector for a repository not covered in the Connector
SDK examples, you may need a custom converter to identify content types from
that repository. The development of custom converters is not described in the
Connector SDK documentation.

As in the seed case, a converter is another function. The main function attributes of
a converter are the following:
v name - The name of the function.
v type - The type of the function.
v type-in - expected input data.
v type-out - expected output data.

Chapter 1. Watson Explorer Engine Connector SDK Overview 13

14 Watson Explorer Engine Connector SDK v1.0.0

Chapter 2. Getting Started

The Connector SDK documentation is designed to enable a Watson Explorer
Engine applications developer to build a connector as quickly as possible. For
developers that may not be familiar with developing Watson Explorer Engine
applications and connectors, this section will serve as an outline of the steps you
will need to complete in order to build your own connector. This guide describes
how to build a connector through four different connector examples.

The Connector SDK Package
This section describes how to compile the connector examples that are provided as
part of the Connector SDK package. The connectors are built using the Gradle
automation tool.

Gradle is a build automation tool that builds upon the concepts of Apache Ant and
Apache Maven and introduces a Groovy-based domain-specific language (DSL)
instead of the more traditional XML form of declaring the project configuration.

Connector SDK Package Overview
The connector package contains a number of sub-directories with all the necessary
scripts, JARs, examples, and documentation.

Important: You need to ensure that your JAVA_HOME variable should point to
the location of your Java JDK or you will not be able to build the examples in the
Connector SDK.

The connector package is delivered as a ZIP archive. The top level of the package
contains a README file in Markdown syntax, Gradle build scripts for both UNIX
and Microsoft Windows platforms, and scripts for creating symbolic links between
the lib folder and each example connector. The package contains the following
directories:

docs Contains Javadocs associated with each connector plus the Connector SDK
documentation.

examples
Contains the Java and Scala version of the Hello World Connector, a Java
version of the Hello World Extended Connector, a Java version of the
Filesystem Connector, a Java version of the Filesystem with Continuous
Update Mode Connector, and a Scala version of the LDAP Connector.

gradle Contains generated files for the Gradle wrapper.

lib Contains the Java libraries that the example connectors require.

Compiling the Connector Examples With Gradle
This section describes how to compile the example connectors that are shipped
with the Connector SDK package using the Gradle automation scrips provided as
part of the Connector SDK.

15

About this task

Note: Ensure that your JAVA_HOME environment variable correctly points to your
JDK installation. Otherwise, you will not be able to build the examples.
To compile the connector examples, do the following:

Procedure
1. Unzip the sdk.zip package.
2. Run ./gradlew projects to see what packages are available.
3. To create necessary links, run mkLinks.sh if you are compiling the connector

package on a Unix platform. Alternatively, run mkLinks.bat if you are
compiling the connector package on a Microsoft Windows platform. This will
set up symbolic links for the examples to the lib directory that is contained in
the Connector SDK package root.

4. To build all packages, run ./gradlew connectorDistribZip. To run only a
particular project, run ./gradlew $projectName: connectorDistribZip

Note: The $projectName is the name of the directory that contains the example.
For example,you can run HelloWorld project by using connector-plugin-
helloworld-gradle. You can find this name when you run ./gradlew projects
as described earlier in this procedure.

Results

The connectors are now built. The distribution version of each connector will be
available in the build/distribution sub-directory of that particular connector's
examples folder.

Using The Example Connectors
This section describes how to install and use the connector examples that are
provided as part of the Connector SDK.

Once you have built the connector examples as described before, you will need to
unpack the distribution zip and then install them in Watson Explorer Engine.
Installation of the example connectors can be accomplished by using the standard
connector installation procedure for all of Watson Explorer Engine connectors.
Alternatively, you can manually install the connector examples. Both installation
methods are described in the following subsections.

Using the Standard Connector Installation Procedure
About this task

To install a new or updated connector from an archive file (.zip file), do the
following:

Procedure
1. Ensure that there is no other version of the same connector still installed.
2. Copy or move the archive file for the connector to the top level of your Watson

Explorer Engine installation directory:

Note: By default, the installation directory is \Program Files\IBM\WEX\Engine
on Microsoft Windows systems, and /opt/ibm/WEX/Engine on Linux systems.

3. Extract the file. All files will be installed into the appropriate locations.

16 Watson Explorer Engine Connector SDK v1.0.0

Specifically, the following files will be installed:
v lib/java/plugins/CONNECTOR-VERSION.zip - The connector plugin (where

CONNECTOR is the name of the connector and VERSION is the specific
version of the connector, such as 1.2.3).

v data/repository-supplements/function.vse-crawler-seed-CONNECTOR.xml -
The connector's seed component, where CONNECTOR is the name of the
connector. When the repository is unpacked, Watson Explorer Engine will
identify the new file in the data/repository-supplements directory and will
install it into the product repository.

4. Log in to your Watson Explorer Engine administration tool.
5. Navigate to Management > Installation. The installation screen displays.
6. In the Repository section of the Installation screen, click unpack. The message

Successfully unpacked repository files displays when the new repository
nodes have been successfully incorporated into the repository.

Results

After completing these steps, the new or updated connector will now be available
as a seed when creating or modifying a site collection seed.

Manually Installing The Connector
About this task

To manually install a new or updated connector, perform the following actions:

Procedure
1. Move the function.vse crawl-seed XML files for the new connector into the

data/repository-supplements directory of your Watson Explorer Engine
installation directory:

Note: By default, the installation directory is \Program Files\IBM\WEX\Engine
on Microsoft Windows systems, and /opt/ibm/WEX/Engine on Linux systems.

2. Move the distribution file for the connector into the lib/java/plugins directory
of your installation directory.

3. Move any JAR files for the connector into the lib/java directory in your
installation directory. Alternately, they can also be installed into any directory
that is located in the Java CLASSPATH.

4. To enable the new connector:
a. Log into your Watson Explorer Engine administration tool.
b. Navigate to Management > Installation > Overview. The installation screen

displays.
c. In the Repository section of the Installation screen, click unpack. The

message Successfully unpacked repository files displays when the new
repository node(s) have been successfully incorporated into the repository.

Results

After completing these steps, the new or updated connector will now be available
as a seed when creating or modifying an existing site collection seed.

Chapter 2. Getting Started 17

18 Watson Explorer Engine Connector SDK v1.0.0

Chapter 3. HelloWorld Connector

The HelloWorld connector is a proof of concept connector that you can use to
begin connector development. It requires a simple environment and is intended to
demonstrate how to get up and running as quickly as possible with a working
connector using the Connector SDK.

Note: The Connector SDK includes two version of the HelloWorld Connector, one
written in Java and one written in Scala. The implementation for either one is
identical and therefore only the Java example is described.

HelloWorld Project Overview
This section provides an overview of the Hello World Project. If you look inside
the project package you will see that the project is organized as described in the
“Connector Development Workflow” on page 3, "Implementation" section.
However, you will not see the same structure inside the main/java node because
this is a very small connector. This solution is provided to demonstrate a basic way
to create a connector. Although, it is an older solution, it is sometimes faster to
develop a connector using this solution as a model, especially when your goal is to
develop a very simple connector, because the complexity introduced by Guice
injection is eliminated.

HelloWorld Project Components
This section describes the components of the Hello World Project.

HelloWorldConnector.java
This connector has only one class that extends ConnectorWorker and
overwrites the processNode() method. ProcessNode() function is necessary
in order to explain how a node should be processed or handled when it is
encountered.

The solution provided for this connector uses VxmlDocBuilder class, from
the Connector Utility package , which provides helpful methods for
creating document elements. All necessary characteristics of a document
can be added using one of the add() methods defined for a VxmlDocBuilder
object .

Crawl Seed
The crawl seed is defined in the vse.function-crawl-seed XML file, as
explained in“Creating The Seed” on page 9. Our proof of concept
HelloWorld connector is using a crawl seed that has two required
parameters: username and password. When invoked, this seed will display
a form with two text fields: one for the username and one for the
password. Although we are not using the password, with this example we
want to show how settings can be added into the crawler seed and how
they can be passed to the connector. In this example the crawl options are
passed to the connector through getConnectorOption() function which
takes as argument the name of the parameter defined in the crawl seed
file.

19

Hello World - Extended
The Hello World Connector can be enhanced by completing the following
exercises. You are encouraged to try the exercises in this section first, before
reading the solutions for them.

It is suggested that you enhance the Hello World Connector by completing these
exercises in the following sequence:

Exercise 1: Add A Display URL
Add a display URL to the "Hello World!" document. For example: add a
URL that when the user clicks on the result title, it will take them to
www.ibm.com.

Exercise 2: Change Document Title
Change the title of the document to be "Hello, your_name!", where the
value of your_name is the one specified in the seed configuration.

Exercise 3: Create A New Document
Create a separate document "Good bye, your_name!", where the value of
your_name is the one specified in the seed configuration.

Exercise 4: Add New Content
Add a new content to the document. The name of the content should be
last-modified-time and the value should be a made-up date.

Exercise 5: Create A Virtual Document
Create a virtual document out of the two documents "Hello, your_name!"
and "Good bye, your_name!" Use the vse-key attribute of the two
documents to create the virtual document.

Exercise 6: Add A PDF File
Create a separate document and add a PDF file to it. The solution reads
the file name and path from the seed.

Exercise 1: Adding A URL
This exercise describes how to add the URL to the Hello World connector example.

About this task

The VxmlDocBuilder object contains all the content that defines the document
including the display URLs. To add the URL, do the following:

Procedure
1. In the Hello World Example, locate where the VxmlDocBuilder object is created.
2. Find where the URLs are added to the document.
3. Replace the value of the URL with www.ibm.com.

Results

When you have completed this exercise, your Hello World connector code should
display as follows:
return new VxmlDocBuilder().url("http://www.ibm.com")

20 Watson Explorer Engine Connector SDK v1.0.0

Exercise 2: Changing The Document Title
This exercise describes how to change a document title. As in the previous exercise,
we know that all the content of a document is contained in the VxmlDocBuilder
object and is added using an add() method.

About this task

To change the document title contained in the VxmlDocBuilder object, do the
following:

Procedure
1. In the Hello World Connector example, locate where VxmlDocBuilder object is

created.
2. Find where the title for the document is added.
3. Change the given value with hello and the name given as an option in the

crawl seed. As explained previously, the option can be retrieved using the
getConnectorOption() function.

Results

When you have completed this exercise, the part of the code that takes care of the
document title should look like this:
.addContent("name", "Hello, " +
node.getConnectorOption(HelloWorldConnectorConstants.SEED_OPT_USERNAME)+ "!")

Exercise 3: Creating A New Document
This exercise describes how to create a new document and builds upon the
previous connector exercise. If you take a close look at the code, you will see that
the original document is created in a function called
createPersonalizedHelloWorldDocument(ConnectorNode node).

About this task

For this task we need to create a new function, similar to the one mentioned
above, that will create another VxmlDocBuilder object which will contain the new
file. To make a unique new document you need to assign an ID (or a vse-key) to
your document that will be different than the ID of the previous document. To
create a new document, do the following:

Procedure
1. In the Hello World Example, write a new function that will create a document,

same as createPersonalizedHelloWorldDocument.
2. Add an attribute called vse-key to the new document.
3. Modify the old document to assign a redefined vse-key, different than the new

one assigned.

Results

When you have completed this exercise, the part of the code that takes care of the
creating of a new document should look like this:
return new VxmlDocBuilder()

.url("http://" + HelloWorldConnectorConstants.SEED_OPT_HOST_GOODBYE)

.setAttribute("vse-key", "2")

.addContent("title", "Goodbye and nice meeting you!")

Chapter 3. HelloWorld Connector 21

.addContent("name", "Goodbye, Java World!")

.addContent("body", "Goodbye, " + node.getConnectorOption
(HelloWorldConnectorConstants.SEED_OPT_USERNAME) + "!")
.toElement();

Exercise 4: Adding New Content
This exercise describes how to add new content to the document. Adding new
content is as easy as calling the addContent() function on the VxmlDocBuilder
object. Adding new content is as straightforward as calling addContent() function
on the VxmlDocBuilder object. Since we want to add a time stamp, the name of the
content should be last-modified-time and the value should be something we
make up.

About this task

To add new content to your document, do the following:

Procedure
1. In the Hello World example find the function where the VxmlDocBuilder object

is created.
2. Apply another addContent() function with the first argument

last-modified-date and the second argument, a date/time value in any format
you prefer.

Results

When you have completed this exercise, the part of the code that takes care of
adding a new content should look like this:
.addContent("last-modified-time", "07/29/2015")

Exercise 5: Create A Virtual Document
This exercise describes how to create a virtual document. A virtual document is a
document that is created by joining two other existing documents.

About this task

As we saw in previous exercise, what makes a document unique is the vse-key
assigned to it. To make a virtual document, you can reuse the same vse-key on
two different documents. To create a virtual document, do the following:

Procedure
1. In the Hello World example create a variable that will hold the vse-key defined

for one of the documents.
2. Change the vse-key attribute value for the second document to the value you

saved in the previous step.
3. Append the new node/document to the connector node object.

Results

When you have completed this exercise, the part of the code that takes care of the
creation of the virtual document should look as follows:

22 Watson Explorer Engine Connector SDK v1.0.0

public void createVirtualDocument(Element documentToAttach,
ConnectorNode node, String vse_key){

documentToAttach.setAttribute("vse-key", vse_key);
appendDocumentToNode(node, documentToAttach);

}

Exercise 6: Add A PDF File In A New Document
This section describes how to add a PDF file as the content of a new document.
For this task, the file should be read from a local path given as a crawl seed option
and the content of the file should be added as a content of a new document.

About this task

To add a PDF file in a new document, do the following:

Procedure
1. Read the content of a PDF file in an FileInputStream object
2. Use readStream() method from the ConnectorData class to read and append the

data from the input stream into the current node.
3. Set the content type of the node to application/pdf. For this step, use the

ConnectorData object used in the previous step and the setContentType()
method.

4. Make sure you handle any exception that can be thrown and you close the
input stream when is not needed anymore.

Results

You have added A PDF file as the content of a new document to the Hello World
example.

Chapter 3. HelloWorld Connector 23

24 Watson Explorer Engine Connector SDK v1.0.0

Chapter 4. Filesystem Connector

The Filesystem connector provides a typical example of a connector that can crawl
a filesystem. The connector contains all the code needed to develop a filesystem
connector.

Filesystem Project Overview
This section provides an overview of the Filesystem project.

If you look inside the project package you will see that the project is organized as
described in “Connector Development Workflow” on page 3, "Implementation"
section. The Filesystem project components are comprised of a first level project
source folder that contains three main components: main, plugin and test. The
plugin.xml file defines the following:
1. The location of the connector's main class that extends ConnectorWorker class.

This class is used to pass information from the crawler to the connector.
2. The location of the connector 's event listener class that extends the

GuiceLifeCycleListener class.

The Main folder contains all the code that defines the connector. This folder
contains three separate folders, each with its own purpose:
1. nodes - The nodes folder contains the crawler-seed function(s). The first

function, and common to all connectors, if function.vse-crawler-seed-
filesystem.xml. This function defines the main components of the crawler
seed. The second function, function.filesystem-posix-rights.xml is used in
the authentication process.

2. resources - This folder contains all the necessary resources used in the
connector's code. In this case, the only necessary resource is the
build.properties file. Please see chapter for more details about
build.properties file.

3. java or scala - All Java and Scala code necessary to create the connector will
be contained in this folder. For a better organization, the code is divided in
multiple folders, that cluster together the classes within same scope. The main
class is FileSystemConnector.java. It extends a ConnectorWorker class and its
only purpose is to start the communication between the crawler and the
connector.
The second most important class is the FilesystemLifeCycleListener.java.
This class is responsible for creating a new Life Cycle Listener with a group of
pre-defined elements that must be configured before the connector can start.
For this connector, we only use the FilesystemDefaultOptionModule and
LogConfigurationStartupModule. You will probably have these two classes in all
your projects because, the first class it is used to bind the crawler seed options
with their default values, and the second one is used for the logging messages
throughout the code.

Next, we need to define a set of nodes. Each node represents a datasource, an
entity which in this case can be a file. The purpose of FileNode.java is to create a
node of type file from a ConnectorNode. This class has an inner converter class that
overwrites the canConvert() and convert() methods.

25

So far we have the connection to the crawler and the conversion from a connector
node to a file node. Next we need to define how this node can be handled. For
this, we define two handlers: FileHandler.java and FolderHandler.java.

Both files have the same purpose but one is used when a file is read whereas the
other one is used when a folder is read from the source. The two most important
functions of a handler are the canProcess() and process(). The canProcess()
function determines if the object received can be process, whereas the process()
function it actually processes the information.

A handler is defined for only one particular data received from the datasource,
therefore the function canProcess() will refurn FALSE if the respective data is not
received. For example, FileHandler.canProcess() function will return false if a
folder is received. In the case when the node can be processed, the fetcher for that
particular node is called, the node is processed and eventually sent to the crawler
queue. If everything works accordingly, a NextAction.STOP_PROCESSING is returned
by this function.

The fetchers are responsible for communicating with the datasource and retrieving
streams of data. For this project, we have a FileFetcher.java class in which the
main function is the retrieveAndProcessFileContent(Path,
StreamConsumer). This function will connect to the given path and will read and
consume the data.

Finally, the last part of most of the projects is the modules folder. For the Filesystem
connector this folder contains the FileSystemChainModule.java and
FileSystemDefaultOptionModule.java. FileSystemChainModule.java contains all the
bindings between classes, from the main node class to the available handlers and
fetchers. The Binder class collects configuration information (primarily bindings)
which will be used to create an Injector. Guice provides this object to your
application's Module implementors so they may each contribute their own
bindings and other registrations. FileSystemDefaultOptionModule.java contains all
necessary bindings. Anything that has a default value in the crawler-seed xml file,
should be bind in the DefaultOptionModule class.

The test folder contains all the unit tests defined for the classes created in the
Main folder.

Filesystem Connector with Continuous Update
The Filesystem with Continuous Update mode connector serves as a starting point
into the complexity of developing connectors to take advantage of the full
capabilities of Continuous Update mode.

Continuous Update mode enables you to detect changes in your repository as they
happen without requiring a full recrawl of your repositories. This functionality
must be configured and customized specifically for each particular repository.
Because Filesystem does not provide information about deleted files, only a partial
example of the Continuous Update mode is implemented. However, the partial
implementation of Continuous Update mode functionality in this example provides
the hooks needed to build a connector with enhanced Continuous Update mode
and tailored for your particular data repository.

26 Watson Explorer Engine Connector SDK v1.0.0

Filesystem with Continuous Update Project Overview
This section provides an overview of the Filesystem with Continuous Update
Project.

If you look inside the project package you will see that the project is organized as
described in“Connector Development Workflow” on page 3, "Implementation"
section. Moreover, there are only few differences between this connector and the
Filesystem Connector and we are going to restrict our discussion to what is new in
the FileSystem Continuous Update connector.

As the name suggests, a light form of Continuous Update is introduced in this
version of the FileSystem connector. When a connector is configured to operate in
Continuous Update mode, new, updated, and deleted data is continuously
indexed. As a result, repository updates, document modifications, and other
changes can be searched with Application Builder or Watson Explorer Engine
applications as quickly as possible. The Watson Explorer Engine crawler should
never need to be manually stopped and restarted, unless for maintenance. Because
of the way a file system is defined, we cannot detect when a file is deleted
therefore the Continuous Update cannot be fully implemented.

Preparing The Filesystem Connector Crawl Seed For
Continuous Update

To implement Continuous Update mode you will need to make a series of
additions to the crawl-seed file. First, you will need to include in the crawl seed
the option for Continuous Update mode. Next, in the process-xls section of the
crawl-seed file will you need to include additional options.

About this task

This task describes how to prepare the crawl-seed file for enabling Continuous
Update mode in the Filesystem connector.

To prepare the crawl seed to enable Continuous Update mode, do the following:

Procedure
1. In the process-xls section of the crawl-seed file, add the following XSL

elements:
<xsl:param name="continuous-update-enabled"/>
<xsl:param name="continuous-update-delay-in-seconds"/>

After adding the XSL elements, the process-xls section should look as follows:
<!-- Declare all configuration variables here. -->
<xsl:param name="files"/>
<xsl:param name="bootstrap-logging-cfg"/>
<xsl:param name="bootstrap-logging-enabled"/>
<xsl:param name="logging-config"/>
<xsl:param name="continuous-update-enabled"/>
<xsl:param name="continuous-update-delay-in-seconds"/>

Along with the original files, bootstrapping, and logging options, you now
have two options that are associated with Continuous Update mode.

2. In the crawl extender, you will need to ensure that the crawler always starts the
connector and generates an error if the JVM shuts down during a crawl.
Therefore, you will need to ensure that your crawl extender is set as follows:

Chapter 4. Filesystem Connector 27

<crawl-extender>
<xsl:if test="$continuous-update-enabled">

<xsl:attribute name="always-run">always-run</xsl:attribute>
<!-- Setting the next attribute causes the crawler to generate a fatal error
if the JVM shuts down. -->
<xsl:attribute name="continuous-update-mode">
continuous-update-mode</xsl:attribute>

</xsl:if>

3. In the crawler-extender-option section you will need to ensure that the default
values for the continuous update options are set as follows:
<crawl-extender-option name="continuous-update-enabled"
value="{viv:if-else($continuous-update-enabled, ’true’, ’false’)}"/>
<crawl-extender-option name="continuous-update-delay-in-seconds"
value="{$continuous-update-delay-in-seconds}"/>

Results

The crawler seed is now prepared to support Continuous Update mode. The next
section describes the code that you will need to add for the connector to handle
continuous updates.

Adding Continuous Update Code To The Filesystem
Connector

When the crawler seed is ready, we can add the necessary code to the connector
body that will handle continuous updates.

About this task

To add the code to support Continuous Update mode, do the following:

Procedure
1. Add a FileSystem Continuous Update Module. This class will only bind tasks

for the continuous update module.
2. In the FileSystemLifeCycleListener.java file, we will add the following call:

<codeph>FileSystemContinuousUpdateModule</codeph>: <codeph>super(new
FileSystemDefaultOptionsModule()</codeph>, <codeph> new
LogConfiguringStartupModule()</codeph>, <codeph>new
FileSystemContinuousUpdateModule()</codeph>.

3. Create a FileSystemChange.java file that will be used to check when a file is
changed or deleted. As we mentioned before deleted files cannot be detected in
a file system, however we added this incomplete functionality to demonstrate
how should this be implemented, when information is available.

4. Create FileSystemChangeFetcher.java class. This class determines which files
have been modified for one given path (given in the seed configuration) and
encapsulates them in FileSystemChange object which will be handled by the
FileSystemChangeHandler.

5. FileSystemChangeHandler overrides the process method from the Handler class.
It creates a new connector node and it enqueues it into the crawler using the
type of the change. If you look closely at the code, it will not be executed, since
we cannot detect that the file was deleted.

Results

These are the only additions that have to be done to make a connector work in a
continuous mode.

28 Watson Explorer Engine Connector SDK v1.0.0

Chapter 5. LDAP Connector

The most advanced connector example provided in the Connector SDK is the
LDAP connector, which connects to repositories using the Lightweight Directory
Active Protocol. (LDAP).

LDAP runs on a layer above the TCP/IP stack. It provides a mechanism used to
connect to, search, and modify Internet directories. The LDAP connector is a full
scale connector, with all the capabilities that can be found in many other
connectors. This connector example is intended to serve as a model and a teaching
tool for a developing a full scale connector with the Connector SDK.

LDAP Project Overview
This section provides an overview of the most complex connector example, the
LDAP connector. The project has the same structure as described in the “Connector
Development Workflow” on page 3, "Implementation" section.

LDAP (Lightweight Directory Access Protocol) is an Internet protocol that email
and other programs use to look up information from a server, usually contact
information. But LDAP is not limited to contact information, or even information
about people. LDAP is used to look up encryption certificates, pointers to printers
and other services on a network, and provide single sign-on where one password
for a user is shared between many services. LDAP is appropriate for any kind of
directory-like information, where fast look ups and less-frequent updates are the
norm.

An LDAP directory is a collection of entries, which consist of one or more
attributes each. Each attribute has one or more values and a type that determines
the kind of information the values can hold and how those values behave during
directory operations. The attribute types and object classes defined for LDAP
clients are described in RFC 4510.

Additionally, LDAP defines the following:
v Permissions - set by the administrator to allow only certain people to access the

LDAP database, and optionally keep certain data private.
v Schema - a way to describe the format and attributes of data in the server. For

example: a schema entered in an LDAP server might define a groovyPerson
entry type, which has attributes of instantMessageAddress, and
coffeeRoastPreference.

LDAP directory service is based on a client-server model. One or more LDAP
servers contain the data making up the LDAP directory tree or LDAP back-end
database. An LDAP client connects to an LDAP server and asks it a question. The
server responds with the answer, or with a pointer to where the client can get
more information (typically, another LDAP server).

The entries are arranged hierarchically in a tree that is structured geographically
and organizationally. Global entries, such as countries/regions, reside at the top of
the tree, followed by state or national organizations, then organizational units,
people, devices, or anything else that might be represented in a directory.

29

A directory entry is represented by its entry name, or relative distinguished name
(RDN), and by its distinguished name (DN). The DN uniquely identifies each entry
on a global level, and is derived by concatenating the RDN of an entry with the
RDN of each of its ancestor entries.

LDAP Project Components
First level of the LDAP project source folder contains three main components: main,
plugin and test.

The plugin.xml defines the following:
1. The location of the connector's main class that extends ConnectorWorker class.

This class is used to pass information from the crawler to the connector.
2. The location of the connector 's event listener class that extends

GuiceLifeCycleListener class.

The Main folder contains all the code that defines the connector. This folder
contains three separate folders, each with its own purpose:
v Nodes

v Resources

v Java or Scala Classes

Nodes The nodes folder contains the crawler-seed function(s). First and most
important function, function.vse.crawler-seed-ldap.xml , is used to
define the main components of the crawler seed. First section of the
crawler seed is used to declare the name of the seed, under wich it will be
displayed in the seed list, in Watson Explorer Engine.

<label>LDAP</label>
<description>
<p>
Crawl an LDAP server by indexing a certain search result.

</p>
</description>

Next we define some necessary attributes used to connect to the LDAP
server -- the hostname of the LDAP server and the port number.
<declare name="host" type="string" required="required"> ... </declare>
<declare name="port" type="int" min="0"
max="65535" initial-value="389"> ... </declare>

Next section is dedicated to the authentication procedure, and is define
between the <proto-section> tags.
<proto-section section="Authentication"> ... </proto-section>

This section defines the necessary attributes that will be used during an
LDAP connection session and it includes a username, a password and a
method of authentication. Also, as described in the previous
paragraph/section, an LDAP connection needs a Distinguished Name (DN)
for authentication.

The next <proto-section> is dedicated to the search attributes. In this
section, the user can define multiple parameters for the search as the scope,
the search time limit, search count limit. They can also restrict the search to
only a list of attributes or she can completely remove some attributes (for
example: blacklist attributes) to speed up the crawl.

30 Watson Explorer Engine Connector SDK v1.0.0

The next <proto-section> is dedicated to the connection security. It defines
the protocols that can be used by the LDAP server and it allows users to
upgrade the unencrypted TCP socket connection to an encrypted SSL
connection by enabling the StartTLS attribute <declare
name="enable-starttls" type="boolean" initial-value="false">.

Also, LDAP security requires SSL Server Certificate Verification which is
defined in the following declaration:
<declare name="ssl-cert-policy" type="enum"
initial-value="JVM default" enum-values="Trust all|JVM default"
other-value="SSL fingerprint"> ... </declare>

The next few advanced <proto-section> are created to add more attributes
for the authentication method selected before. The crawl seed also
contains a full section for debugging introduced by the following
<proto-section><proto-section section="Advanced - Debugging"
toggle-section="toggle-section">.

The next two xml functions are converters.
1. function.vse-converter-ldap.xml – Very basic converter that just

outputs application/ldap as application/vxml-unnormalized without
doing any conversion.

2. function.vse-converter-ldap-binary.xml – Very basic converter that
just outputs application/ldap-binary as application/vxml-
unnormalized without doing any real conversion.

Note: When you create a search collection using the LDAP seed, you need
to make sure you add the LDAP converter too, otherwise the crawler will
return errors.

Resources
This folder contains all the necessary resources used in the connector's
code. In this case, the only necessary resource is the build.properties file.
Please see chapter“The Connector SDK Package” on page 15 for more
details about build.properties file.

Scala Main class for the LDAP connector is LdapConnector.scala. The only scope
of this class is to start the communication between the crawler and the
connector. The next important class is the LdapLifeCycleListener.scala.

This class is responsible for creating a new Life Cycle Listener with a
group of pre-defined elements that must be configured before the
connector can start. For this connector, we use LdapDefaultOptionsModule,
LogCongiguringstartupModule, StdOutStdErrRedirectingStartupModule and
LdapConnectionPoolStartupModule.

Next, we need to define what is a node in an LDAP environment. One
class is created for each entity that will be referred as a node in the LDAP
connector: LdapRootNode.scala , LdapPagingNode.scala and
LdapResumeNode.scala.

All three functions override the canConvert() and convert() functions. The
first one checks if the data received is of the expected type, whereas the
second function converts the ConnectorNode into the necessary Ldap type of
node.

As the name suggests, LdapRootNode is used to create a reference to the
root node of an LDAP call. This node will contain the main characteristics
of an LDAP node. The LdapResumeNode is used when resume function is

Chapter 5. LDAP Connector 31

activated in Watson Explorer Engine. Finally, the LdapPagingNode during
search to cut the result set into pages.

So far we took care of the interaction between the crawler and the
connector and the conversion step, when a ConnectorNode is received.

Next we need to define how the data is handled. Since we defined three
different Ldap nodes we will also define three different handlers:
LdapRootNodeHandler.scala, LdapResumeHandler.scala and
LdapPagingNodeHandler.scala.

LdapRootNodeHandler: processes a generic Ldap node by initiating a search
given the attributes setting in the crawl seed (for example: search base DN,
search filters, search controls) and sets the NextAction to STOP_PROCESSING.

LdapResumeHandler: defines how the data hold in a resume node should be
processed. Since the LDAP does not support resume options, the process()
method will only throw a ResumeUnsupportedException error. However, we
commented out the code that would have been written here if resume
would have been possible. Use this as an example of how a resume option
can be treated:
override def process(node: LdapResumeNode): NextAction =
{ //In case resume should be interpreted as refresh:
crawler.enqueueURLWithChangeID(node.seedUrl,
NodeUtils.getCurrentTimeAsChangeId) NextAction.STOP_PROCESSING }

LdapPagingNodeHandler: processes the data contained in a paging LDAP
node. First, it creates a page result control, or an encoded cookie, from the
data contained in the LdapPagingNode. Then, this cookie is sent to the
processLdapNode() function along with the node information. In the end,
the NextAction is set to STOP_PROCESSING.

Due to its particularity, LDAP connector project has an extra folder,
CONNECTION, that contains all the classes necessary during the
authentication mechanism.

LdapBindManager.scala is the main binding class for the LDAP connector
and it creates a binding connection and a binding context for the connector.

Finally, the last part of the project is the MODULES folder. LDAP connector
contains five modules:
1. LdapDefaultOptionsModule.scala: contains all necessary bindings.

Anything that has a default value in the crawler-seed xml file, should
be bind in this class.

2. LdapHandlerChainModule.scala: contains buildings of the converters
and handlers for each entity node defined in the nodes folder. This
class contains handlers binding for LdapRootNode, LdapPagingNode and
LdapResumeNode. It also contains a binding for a ConnectorNode handler
in case none of the predefined LDAP entities are found. This binding is
to an exception Handler class.

3. LdapConnectionModule.scala: Binds the values given in the crawler
seed to the connector framework for the LDAP connection.

4. LdapConnectionPoolStartupModule.scala: Binds the values given in the
crawler seed to the connector framework for the LDAP connection pool
startup module.

5. PipelineCapacityMonitorModule.scala: Binds the pipeline capacity
monitor factory to an instance of a factory.

32 Watson Explorer Engine Connector SDK v1.0.0

Chapter 6. Troubleshooting

This section enables you to troubleshoot the connector that you develop with the
Connector SDK. It is divided into the follow sections:

Common Pitfalls
This section provides an overview of common development mistakes that
you may encounter following along with the procedures of this SDK.

Debugging
This section provides a list of debugging tools and techniques that can help
you identify problems that you may be encountering when developing
connectors with the Connector SDK.

Common Pitfalls
This section describes common pitfalls that may occur when developing a
connector using the Connector SDK. You can use the information here to
troubleshoot your connector.

Connector could not be started
Make sure you are running the right seed. Click on the XML tab. Is the
vse-crawler-seed-XXX the right function? You can also click on the link
that represents the vse-crawler-seed function and check the function code.
Is this the right function? Are you calling the right class for the connector
code?

No Error
The description of the error usually says it cannot find different plugins,
none of which is your connector's plugin.
v Make sure that Watson Explorer Engine can see the plugin file for your

connector. Are the values provided in plugin.xml and
vse-crawler-seed.xml matching?

v Do a gradle clean followed by a gradle ConnectorDistribZip and
redeploy your connector.

The connector could not initialize
The connector could not initialize:
java.lang.IllegalArgumentException: extension confluence.plugin@confluence
not available in point
main.plugin@com.vivisimo.connector.ConnectorWorker at
org.java.plugin.registry.xml.ExtensionPointImpl.getAvailableExtension(
ExtensionPointImpl.java:150)
at com.vivisimo.libmisc.PluginBridge.getPlugin(Unknown Source) at
com.vivisimo.connector.ConnectorRunner.setupThreads(Unknown Source)
at com.vivisimo.connector.ConnectorRunner.main(Unknown Source)

v Make sure that the connector zip file is in the plugins directory
\lib\java\plugins\

v Make sure that the connector has the right permissions set. You can
check the permissions on the other connector zip files to apply the same
for the connector that is failing to initialize.

v Make sure you are running the right seed. Click on the XML tab. Is the
vse-crawler-seed-XXX the right function.

33

java.lang.UnsatisfiedLinkError: no misc in
java.library.path

Exception in thread "main" java.lang.UnsatisfiedLinkError:
no misc in java.library.path at
java.lang.ClassLoader.loadLibrary(ClassLoader.java:1682) at
java.lang.Runtime.loadLibrary0(Runtime.java:822) at
java.lang.System.loadLibrary(System.java:993) at
com.vivisimo.libmisc.Libmisc.<clinit>(Unknown Source) at
com.vivisimo.libmisc.StringUtils.<clinit>(Unknown Source) at
com.vivisimo.libmisc.XMLUtil.stringToNode(Unknown Source) at
com.vivisimo.com.XMLTest.getChildNodesTest(XMLTest.java:80) at
com.vivisimo.com.XMLTest.main(XMLTest.java:56)

v On Microsoft Windows systems, make sure that the \lib folder contains
misc.dll and it has the right permissions.

v On Unix/Linux systems, make sure that the /lib folder contains the file
libmisc.so and has the right permissions.

Connection Refused or Port out of Range
Error: content-type [vivisimo/crawler-error]
Problem with logon: Connection refused

Or
Error: content-type [vivisimo/crawler-error]
The connector did not catch an exception:
java.lang.IllegalArgumentException: port out of range:
<port used in configuration>

v The port was incorrectly set in the search collection configuration.
Ensure that the port in the configuration matches the port listed in the
repository information.

FROM keyword not found where expected
Error: content-type [vivisimo/crawler-error]
Could not execute full statement: ORA-00923: FROM keyword not found where expected.

v Click on the Configuration tab of the Search Collection from which the
error is generated, and select the Crawling tab.

v Click on Seed Component of your collection.
v Scroll down to the Free XML section and click Edit.
v Find the with tag where name equals sql.
v Replace any single quotes with double quotes inside of the tag and click

OK.
v Test the crawl again.

DNS Server Failure
Error: content-type [vivisimo/crawler-error]
DNS error: DNS server failure/

The host URL of the data crawl is incorrect or you are not connected to the
intranet/internet.
v Double check the host information listed in the Search Collection

configuration for a typo.
v Check your network connection.

The connector could not initialize: java.lang.NoClassDefFoundError
Error: content-type [vivisimo/crawler-error]
The connector could not initialize:
java.lang.NoClassDefFoundError: com/plumtree/remote/prc/PortalException at
java.lang.Class.getDeclaredConstructors0(Native Method) at
java.lang.Class.privateGetDeclaredConstructors(Unknown Source) at

34 Watson Explorer Engine Connector SDK v1.0.0

java.lang.Class.getConstructor0(Unknown Source) at
java.lang.Class.getConstructor(Unknown Source) at
com.vivisimo.connector.ConnectorRunner.setupThreads(Unknown Source) at
com.vivisimo.connector.ConnectorRunner.main(Unknown Source)

The path to the JARs directory is incorrect.
v Double check the JARs directory path.

com.google.inject.CreationException: Guice creation errors
While locating java.lang.String annotated with
@com.ibm.dataexplorer.connector.extensions.inject.ConnectorOption
for parameter 0 at
com.ibm.dataexplorer.connector.extensions.inject.
LogConfiguringStartupModule$LogConfigurator.<init>
(LogConfiguringStartupModule.java:188) at
com.ibm.dataexplorer.connector.extensions
.inject.LogConfiguringStartupModule.configureBeforeCrawlStarts
(LogConfiguringStartupModule.java:175)

When you write tests function, first thing you do is to create a test
Crawler. This error says that an option is missing.
v The error is related with the LogConfiguration class
v To fix it, you need to add the missing option. In this case the following

option was missing:
connector_option(Constants.CollectionSettings.LOGGING_CONFIG,
 "<root />")

Debugging
This section describes connector debugging techniques and methods that can help
resolve common connector problems.

Validate user and password
Often simple connector issues can be attributed to basic account permission
errors. Confirm that you are using an account with the appropriate
permissions to crawl your repository and that you are using the right
password for it.

Check the documentation
Be sure that you have correctly configured all installed Watson Explorer
components and your connector, and that there are no missing steps, or
incorrect configuration settings, which might be causing a problem in
using the connector.

Tip: Rights functions for user collections are common connector pitfalls.

Eliminate resource-side errors
It is a good tactical step to "assume" the issue is with a Watson Explorer
Engine connector but, at the same time, to make the administrator of the
resource that you are crawling aware of any problems crawling that
resource. The administrator may be aware of the issue and have a patch
available. It never hurts to check.

Test multi-threaded versus single-threaded
To determine if a connector issue is related to multithreading, set the
thread count to 1 and then test a new crawl. If an error is encountered,
multithreading is not the source of the problem. Setting the thread count to
1 also has the benefit of making the log easier to read.

Chapter 6. Troubleshooting 35

Enable bootstrap logging
If a connector is not starting at all, enable bootstrap logging to determine
where the failure occurs when the connector is initiated. Bootstrap logging
can be enabled in the Watson Explorer Engine administration tool's seed
configuration screen.

To activate bootstrap logging do the following:
1. From the seed configuration page of your site collection, go to

Configuration > Crawling. The crawling configuration page displays.
2. In the Seeds section, click edit and expand the Advanced - Logging

collapsible menu.
3. Check the enable connector bootstrap logging box. Additionally, enter

Log4j settings in the Connector Logging Configuration text box.
4. Click OK.

Enable connector logging
If Bootstrap Logging is not available, you can enable a logging condition.
To add a logging condition to the connector seed, do the following:
1. In the Watson Explorer Engine administration tool, select Add A New

Condition from the Configuration > Crawling > Conditional Settings
section.
A pop-up window displays with a list of new conditions.

2. Scroll down and select connector logging.

Your goal is to capture a stack trace, which can help pinpoint what might
be causing your connector problems.

Enable Log4J logging levels
Log4j enables you to activate different levels of logging without modifying
the application binary thus avoiding a heavy performance cost. Logging
behavior can be controlled by editing a Log4J configuration file.

Key logging levels that can be applied using the Log4j utility are the
following:
v OFF - The OFF level has the highest possible rank and is intended to turn

off logging.
v FATAL - The FATAL level designates very severe error events that will

presumably lead the application to abort.
v ERROR - The ERROR level designates error events that might still allow the

application to continue running.
v WARN - The WARN level designates potentially harmful situations.
v INFO - The INFO level designates informational messages that highlight

the progress of the application at coarse-grained level.
v DEBUG - The DEBUG Level designates fine-grained informational events

that are most useful to debug an application.
v TRACE - The TRACE Level designates finer-grained informational events

than the DEBUG
v ALL - The ALL has the lowest possible rank and is intended to turn on all

logging.

For more detailed information about Log4j and its configuration, see the
online resources for Log4j.

Enable Oakland HTTP wire logging
Enabling logging for wire-level activity is useful for Watson Explorer
Engine connectors that use HTTP connections. This is because the wire log

36 Watson Explorer Engine Connector SDK v1.0.0

http://logging.apache.org/log4j

records all data transmitted to and from your server(s) when executing
HTTP requests. The wire log uses the org.apache.http.wire logging
category, which should only be enabled to debug problems. Be aware that
wire logging will produce a large amount of log data.

Check for missing JAR files
Be sure that you have all the JAR files needed. If the connector was
installed correctly, the necessary JAR files should have been copied to the
right location by default.

Open JMX port to profile resources
Java Management Extensions (JMX) supply tools for managing and
monitoring applications, system objects, devices and service oriented
networks.

To enable the JMX agent and configure its operation, you must set certain
system properties when you start the Java virtual machine (JVM). For
detailed instruction, consult help resources for using JMX and other JMX
compliant tools.

Packet trace with Wireshark
If you are familiar with Wireshark and its advanced packet trace
capabilities, it can be used instead of, or to augment, any packet tracing
capabilities in the connector that you are using. Consult your Wireshark
help resources for using the more powerful features of Wireshark tracing.

Profile resources
Use common performance testing methods to determine how fast the
connector performs under a particular workload. Profiling the resources
used under various work loads serve to pinpoint bugs relating to
scalability, reliability, and resource usage.

Replicate in development environment
Replicate the production environment issue in your development
environment and test for the same bug.

Reproduce without connector
Another simple test to determine if the connector is the source of the error,
is to attempt to probe the remote resource without it. If you are unable to
contact the remote resource without the connector, there may be a problem
with your environment rather than with the connector. Common tools used
to help in this regard include the following:
v Curl is a command line tool for sending and receiving files using URL

syntax. Since Curl is used by many Watson Explorer Engine connectors,
it is a great tool to help pinpoint the source of problems when crawling
associated resource sites.

v Check that your problems are not browser specific. To do so, attempt to
display search results in modern browsers such as Firefox, Internet
Explorer, Chrome, and Safari. Test in the browser versions that are
relevant to your users.

v Ping and Traceroute can be used to send packets of information to the
remote data resource for the purpose of retrieving information, which
can useful for testing your internet connection. Consult your operating
system documentation on how to locate and execute the ping and
traceroute utilities that are available in your environment.

Chapter 6. Troubleshooting 37

Adjust crawler delay
In Global Settings > Crawler Aggressiveness, set the Delay value to 1.
This will increase requests on your server to help identify potential
problems.

Note: We do not recommend setting the delay to 0. Doing so can cause
excessive resource usage on your crawling server, repository server, or
both.

Validate web services
Check that all web services are performing correctly and that all the
needed web services are activated in the server(s) where the data you are
crawling is hosted. You can use a Web test to test Web services. Check
online resources for writing specific web tests based on your environment.

Remote Debugging with Eclipse
About this task

Using Eclipse you can remotely debug connectors that are running on a Watson
Explorer Engine instance. The procedure to do so is the following:

Procedure
1. On the server side, set the debug-port value in the collection definition, and set

the value to y in function vse-crawler-seed-extender-java-common.
a. Select the collection's seed component.
b. Select the XML view of the seed component.
c. Under the crawl-extender change the debug_port value at the bottom of the

XML file, by adding the port number you selected. For example, if the port
number is 5005 the line should be: <with name="debug-port">5005</with>.

2. Access the XML view of the function vse-crawler-seed-extender-java-common.
3. Search for the test="$debug-port > -1 condition and set suspend the suspend

attribute of this XML element to y.

Note: Set suspend to y if the target VM is to be suspended immediately before
the main class is loaded. Otherwise, set it to n.

4. In Eclipse, open Debug Configurations window, right click on Remote Java
Application and select New.

5. On the right panel give a name for the current remote debug settings, and
select a project that will be debugged.

6. Keep the connection type Standard (Socket attached) and add the remote host
and the port number that was set in the collection's seed.

Note: Be sure that the debug port number is not used by another process and
is the same value set in the seed file as described in step 1.

7. In the Source tab add the project or projects whose source might be debugged.
8. Click Apply to accept the settings then start a debugging session by clicking

Debug.

Note: If suspend is set to n, and because the remote connector JVM could have
a very short life time, clicking Debug does not guarantee a remote debugging
session. Make sure that you have set a break point in the code and you have
started the debug session after the remote connector started and before it
ended.

38 Watson Explorer Engine Connector SDK v1.0.0

Results

You have remotely debugged a connector using Eclipse.

Chapter 6. Troubleshooting 39

	Contents
	Chapter 1. Watson Explorer Engine Connector SDK Overview
	Contents
	Additional Sources
	Connector Development Workflow
	Connector SDK Framework
	Basic Connector Terminology
	Common Connector Architecture
	Planning Overview
	Identifying Connector Requirements

	Writing Overview
	Creating The Seed
	Implementation
	Converters

	Chapter 2. Getting Started
	The Connector SDK Package
	Connector SDK Package Overview
	Compiling the Connector Examples With Gradle

	Using The Example Connectors
	Using the Standard Connector Installation Procedure
	Manually Installing The Connector

	Chapter 3. HelloWorld Connector
	HelloWorld Project Overview
	HelloWorld Project Components
	Hello World - Extended
	Exercise 1: Adding A URL
	Exercise 2: Changing The Document Title
	Exercise 3: Creating A New Document
	Exercise 4: Adding New Content
	Exercise 5: Create A Virtual Document
	Exercise 6: Add A PDF File In A New Document

	Chapter 4. Filesystem Connector
	Filesystem Project Overview
	Filesystem Connector with Continuous Update
	Filesystem with Continuous Update Project Overview
	Preparing The Filesystem Connector Crawl Seed For Continuous Update
	Adding Continuous Update Code To The Filesystem Connector

	Chapter 5. LDAP Connector
	LDAP Project Overview
	LDAP Project Components

	Chapter 6. Troubleshooting
	Common Pitfalls
	Debugging
	Remote Debugging with Eclipse

